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J. Phys. A: Math. Gen. 19 (1986) 1111-1125. Printed in Great Britain 

Models for SU(3) in terms of so(n, 2) and so*(2n) algebras 

R Le Blanc and D J Rowe 
Department of Physics, University of Toronto, Toronto, Ontario, Canada MSS 1A7 

Received 19 March 1985, in final form 17 July 1985 

Abstract. Mathematical and physical models for SU(3) are given in terms of unirreps of 
the so(n,2) and so*(2n) algebras. Vector coherent state representations are given for all 
the discrete series unirreps of SO(n,  2)  and SO*(2n). Traceless bosons are shown to arise 
naturally in these representations. A new and elegant realisation of the s0*(8) - s0(6,2) 
model for SU(3) is given and it is shown how to perform calculations in the so*(8) model 
using the powerful vector coherent state representations formalism. 

1. Introduction 

In recent times, the term ‘model’ has come to acquire rather specific meanings both 
in physics and in the representation theory of Lie groups. A model in physics is 
particularly useful when it is characterised by a dynamical group or, equivalently, 
when it is expressible in terms of a spectrum generating algebra which is the Lie algebra 
of a dynamical group. Given a model Hamiltonian, it was traditional to seek a symmetry 
group that would explain its degeneracies. However, it has recently become apparent 
that it is more generally useful to seek a dynamical group that will at once explain the 
characteristics of a whole spectrum. The dynamical. group should ideally, and usually 
does, include symmetry groups as subgroups. More important, however, is the fact 
that a realisation of the model is provided by an irreducible unitary representation of 
its dynamical group. Thus the carrier space for the unirrep of the dynamical group is 
a Hilbert space for the model. In the theory of nuclear collective motion, for example, 
the symplectic group S p ( 3 , a )  is the dynamical group for the microscopic collective 
model and U(6) is the dynamical group for the interacting boson model. 

In the theory of group representations of compact Lie groups, the term model has 
recently acquired a closely related meaning. Given a compact Lie group G,  a model 
for this Lie group is defined as ‘a realisation of a representation of G which consists 
of a direct sum of irreducible representations (irreps), containing exactly one rep- 
resentative from every equivalence class of irreps of G’ (Bracken and MacGibbon 1984, 
BernStein er a1 1975). Again it is very useful if such a model carries an irrep of a 
dynamic group H which must now necessarily be non-compact. Usually it will be 
required that G be a subgroup of H but in some instances, one of which is given in 
this paper, we may dispense with such a requirement. In the latter case, the Lie algebra 
of G will belong to the enveloping algebra of H. 

For example, the group product SU(2)[HW(2)], with HW(2) a two-dimensional 
Heisenberg-Weyl group, has been used by Schwinger to study the tensor structure of 
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SU(2). More recently, a unirrep of the non-compact semisimple group S0(6,2) was 
identified as a model for SU(3) and used to study the tensor structure of SU(3). 
Realisations of the S0(6,2)  model were given by Biedenharn and Flath (1984), Bracken 
and MacGibbon (1984) and Bracken (1984). Naturally one would like a model 
realisation that has useful properties like unitarity, economy in terms of the number 
of variables required for its realisation, ease of computation in the model space and, 
if possible, the realisation should naturally express itself in a canonical (Cartan) basis. 
All of the above-mentioned realisations of the S0(6,2)  model suffer in one or many 
of these aspects which is one of the motivations for the present work. 

A difficulty with S0(6,2)  as a dynamical group for SU(3) is the fact that SU(3) is 
not embedded in S0(6,2)  in an obvious manner. We shall show that, in contrast, the 
locally isomorphic S0*(8) group does not have this problem. For, whereas the maximal 
compact subgroup of S0(6,2)  is S0(6)@S0(2) ,  that of S0*(8) is U(4). Thus SU(3) 
is canonically embedded in U(4) and hence in S0*(8). The identification of the S0*(8) 
structure leads to some valuable new insights, among which is the recognition that the 
s0*(8) algebra naturally contains the fundamental Wigner operators as defined by 
Biedenharn and Louck (cf Biedenharn and Flath 1984). 

We give a realisation of the s0*(8) - s0(6,2) algebra which is naturally expressed 
in a Cartan basis, is unitary and quadratic in two Bargmann 4-vectors. It is shown 
that the non-unitary realisation of s0(6,2) expressed in terms of traceless bosons by 
Bracken and MacGibbon (1984) is one of a set of coherent state representations of 
this algebra given by the recent vector coherent state representation theory of Rowe 
(1984) and Rowe et a1 (1985a). I t  is also isomorphic to one of an equivalent set of 
partially coherent state representations of Deenen and Quesne (1984). Furthermore, 
it is shown how these coherent state representations can be utilised to calculate reduced 
matrix elements of the s0*(8) and s0(6,2) algebras. 

A second motivation for the present analysis is the possibility of utilising the concept 
of an SU(3) model in the development of the microscopic theory of nuclear collective 
motion. As mentioned above, the non-compact symplectic group Sp(3,%) is a dynami- 
cal group for the microscopic collective model. The relevant Sp(3,%) unirreps are 
lowest weight representations, each having a lowest weight state that is simultaneously 
a lowest weight state for a unirrep of U(3), the maximal compact subgroup of Sp(3, %). 
Now, an Sp(3, %) lowest weight state can be identified with an intrinsic state of the 
collective model. The rotations and high frequency vibrations of this intrinsic state 
are described by the Sp(3,%) collective model. However, the experimental data seem 
to suggest the occurrence of additional low frequency (beta and gamma) vibrational 
degrees of freedom that are not embraced by the Sp(3, %) model. It is of major interest 
therefore to seek another dynamical group, in some sense complementary to Sp(3, %), 
appropriate for those low frequency collective vibrations. Such a group should connect 
different Sp(3, %) lowest weight states. The discovery of such a dynamical group and 
its subsequent realisation in terms of both collective and single-particle variables would 
evidently represent a major advance in nuclear theory. Among other things, it could 
give the long sought microscopic interpretation of the very successful phenomenological 
interacting boson model. Evidently, the S0*(8) - S0(6,2)  groups are candidates for 
such a dynamical group. But it is also possible that a microscopic realisation of specific 
unirreps of the so(A, 2) algebra, which is thoroughly reviewed in 0 5 ,  could be used 
to generate three-rowed representations of SO( A) and, by complementarity (Moshinsky 
and Quesne 1970,1971), SO(A)@Sp(3,%) lowest weight states for the symplectic 
model of A nucleon collective motions. 
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2. Models for the symmetrical representations of SU(3) 

Before introducing the S0*(8) model spanning all generic {h,h,} SU(3) unirreps, we 
will discuss simpler models for the space of all symmetrical unirreps of SU(3) labelled 
by the characters {h,O). 

A possible dynamical group for the one-rowed representations of SU(3) has been 
found to be the semi-direct product group U(3)[HW(3)] (Haskell and Wybourne 1973) 
with the normal subgroup HW(3) a three-dimensional Heisenberg-Weyl group. If we 
relax the requirement that the dynamical group contains SU(3) but still retains a 
sufficient structure to classify all states, we obtain the minimal group 

(U(l)@S0(3))[HW(3)1 (2.1) 

where U(1)) is the one-dimensional group generated by the boson number operator. 
One-rowed representations are then uniquely labelled by the U( 1) label h,  and a basis 

I{h,O)LM) (2.2) 

is uniquely labelled by the SO(3) 3 SO(2) labels. Such a simplification is allowed as 
the SU(3)JSO(3) branching is multiplicity free for SU(3) symmetrical unirreps. 

The fundamental representation of this group is carried by the space of Bargmann 
polynomials in a three-dimensional vector g. Bases for the Lie algebras acting on the 
Bargmann polynomials are given respectively by 

HW(3): {gt> a/agJ9 ‘Z,>, 

U( 1): { N  = g d a g , ) ,  (2.3) 

SO(3): { Lt  = -iEIJkgJa/dgk). 

The Lie algebra for U(3) 

U(3): {C,, = gna/as,l (2.4) 

is seen to be embedded in the enveloping algebra of (U( l)OS0(3))[HW(3)].  
It is clear that the polynomials of degree h,  in the Bargmann variables g, carry the 

unirrep {h,O} of SU(3). To construct the corresponding basis, it is convenient to exploit 
the local isomorphism so(3) = su(2). Under this isomorphism, the Bargmann variables 
become components of an SU(2) symmetrical tensor of rank (2) or a U(2) tensor of 
rank (20). It follows that the Lie algebra of the group product (U(l)@S0(3))[HW(3)] 
is isomorphic to a u(2)-boson algebra U(2)[HW(3)] for which a canonical basis has 
already been constructed (Le Blanc and Rowe 1985a, b, Quesne 1981). The U(2) 
content of this irreducible representation of the u(2)-boson algebra is given by the set 
of U(2) unirreps characterised by partitions {nln2} with n1,n2 even integers and n ,  sz n2. 
Using the isomorphism, we can make the identification 

SU(3) 2 SO(3) 3 SO(2) U(2) 3 U ( l )  
( 2 . 5 ~ )  I {hlO) L M ) = I { n l n J  v ) 

with 

M = U. 
n , -  n2 L e -  

2 ’  
n , +  n, h,=- 

2 ’  (2.56) 

It is easily verified that this algebra effectively generates a space isomorphic to the 
direct sum of all symmetrical SU(3) 2 SO(3) unirrep spaces (cf figure 2). 
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Observe that the Bargmann variables and the differentials in them are Wigner 

(2.6) 

operators, i.e. if in a spherical basis we define 
T{"} - 
Im - (-l)"d/ag-m, T('oI - 

1m - gm, 

then 

T!',O'I{h,O}LM)=C ,, cL,l{hl+l,O}L'M+m), 
L 

T i ~ ' l { h , O } L M ) = ~  dL.l{hl-l,O}L'M+m), 
L' 

with 

L'= L k  1, 

( 2 . 7 ~ )  

(2.7b) 

and 

c, .=(LM; lmJL'M+m)({h, +1, O}L'~JT~'o'I({hlO}L), 

d,.=(LM; lmlL 'M+ m ) ( { h ,  - 1, O}L'I~Ti'''~I(hlO}L). 
( 2 . 7 ~ )  

The S0(3)-reduced matrix elements in ( 2 . 7 ~ )  are given immediately by the known 
SU(2)-reduced matrix elements of the u(2)-boson algebra (Le Blanc and Rowe 1985a, 
Quesne 1981) 

( 2 . 8 ~ )  ( {A ,  + 1, OIL'll Ti'O1ll{hl OIL) = ({n:n;~Ila+ll{nln*~) 
with 

n ;  = h,+ 1 +L' ,  n i  = h ,  + 1 - L'. 

We find 

(2.86) 

A knowledge of these matrix elements enables one to easily calculate matrix elements 
of the other Wigner operator T""= ( Tt'o))t and of higher rank tensors in an SO(3) 
basis. For example, the SU(3) algebra is given by (Le Blanc and Rowe 1985b, Haskell 
and Wybourne 1973) 

T j p  (-1)'J2[T','O'x Tt") I l~m, l = l , 2 .  (2.10) 
We find 

({hl,  O}L'// T!,Z"IJ{hlO}L)= 6,,,[L(L+ I)]''*, 

(2.11) 

The group (U(l)OS0(3))[HW(3)]  can be regarded as a contraction of S0(3,2) .  
Indeed, it is known that S0 (3 ,2 )  is locally isomorphic to Sp(2,Yt) for which the 
U(2)-boson group is a familiar contraction limit (see also 0 5 ) .  Consequently, 
SO(3, 2) - Sp(2, %) are also dynamical groups for the symmetrical representations of 
SU(3). 
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An Sp(2,W) unirrep can be labelled by the U(l)OSU(2)  quantum numbers (a(A))  
of its lowest weight state. For example, the positive parity states of the simple 
two-dimensional harmonic oscillator, shown in figure 1, carry the unirrep (1/2(0)), 
where 2 0 =  1 denotes the harmonic oscillator energy of the lowest weight state in 
harmonic oscillator units. One observes that, for this representation, every integer 
value of L occurs precisely once. Thus the (1/2(0)) representation of Sp(2,M) is a 
model for SO(3) (see also § 5 and Bhaumik et al (1975)). However, it is not a direct 
sum of SU(3) unirreps. Nevertheless, every symmetrical SU(3) unirrep can be em- 
bedded in the (1/2(0)) Sp(2, %) space (Le Blanc 1985). For example, the carrier space 
for the SU(3) representation (2) is simply the direct sum of the L = 0 and 2 subspaces. 
In this way (as we shall show elsewhere), it is possible to obtain a boson expansion 
for SU(3), regain the SU(3) 2 SO(3) reduced matrix elements given above and obtain 
an explicit realisation of the contraction of SU(3) to the rotor algebra, [!Xs]SO(3). 

The U( n )  content of an arbitrary lowest weight Sp( n, 9l) unirrep has been given 
recently by Rowe et a1 (1985b). In particular, the U(2) content of an Sp(2, W )  unirrep 
( ~ ( 0 ) )  for U 3 2 is shown in figure 2. One sees that the ( ~ ( 0 ) )  representation for U 2 2 
is indeed a model for the symmetrical SU(3) representations. The spectrum of states 
is, in fact, precisely the same as for the U(2)-boson algebra. Indeed, the Sp(2,%) 
algebra in the ( ~ ( 0 ) )  representation contracts to the above realisation of the U(2)-boson 
algebra as U + m. 

3. The S 0 ( 6 , 2 )  model for SU(3) 

To generate two-rowed representations of SU(3) in a Bargmann space, one needs a 
minimum of two three-dimensional Bargmann vectors g, and g,. These vectors will 
generate symmetrical representations {hOO . . . 0} of a U(6) group for which the usual 
reduction 

U(6) J. %(2)OU(3):{hOO.. $ 0 )  J. 2 ( h , h , )  x {h,h,O} (3.1) 
h l + h > = h  
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in terms of the complementary subgroups %(2) and U(3) is known to be multiplicity 
free, The Lie algebras for the complementary subgroups %(2) and U(3) of this 
reduction are given respectively (with summation over repeated indices) by 

W 2 ) :  WeP = gd/agP1L {‘I, = gL21a/ageJl)‘ (3.2) 

(g10) = 1 (3.3) 

Note that under these definitions the boson vacuum 

spans respectively a (000) unirrep of U(3) and a (00) unirrep of %(2). Under U(3), 
both g, and g, span (100) unirreps and, as a consequence, the (10) SU(3) unirrep 
occurs twice. In general, an SU(3) unirrep { h 1 h 2 )  occurs with multiplicity equal to the 
dimensionality of the % ( 2 )  unirrep ( h , h 2 ) .  Also, if one restricts to the subspace of 
%(2) lowest weight states, one obtains an SU(3) model space. This model space was 
discussed in detail by the authors elsewhere. The tensor structure of the enveloping 
algebra of this %(2)0U(3)  group product was also studied therein and a canonical 
basis of SU(3) tensors was given in terms of %(2)0SU(3)  tensors classified by SU(3) 
operator patterns (Le Blanc 1985, Le Blanc and Rowe 1986). Although very useful 
for many practical purposes (we have succeeded in obtaining closed form expressions 
for specific classes of SU(3) Wigner coefficients), this model space has the disadvantage 
that it does not carry a unirrep of any known dynamical group with a simple action 
which is therefore an impediment to a full resolution of the multiplicity problem. 
Undoubtedly, a group could be found with a complicated action. It is nevertheless 
worthwhile to consider other model spaces. 

We recall that for the symmetrical unirreps of U(6), the O(6) reduction 

U ( 6 ) & 0 ( 6 ) :  {hOO . . .  O)&[hOO]+[h-2 ,0 ,0]+ .  . .+[ loo]  or [OOO] (3.4) 

is multiplicity free. Furthermore, SU(3) is known to be embedded in SO(6)  and the 
reduction 

SO(6) & YD(2)0SU(3):  [AOO] [v]@{A, ( A  - ~ ) / 2 ) ,  

u = - A , - A + 2  , . . . ,  A-2,A, (3.5) 
is again multiplicity free (Dragt 1965). In this reduction, the Lie algebras of the 
complementary subgroups SU(3) and Y O ( 2 )  are respectively given by (Chac6n et a1 
1984, Biedenharn and Flath 1984, Bracken and MacGibbon 1984) 

Under this realisation g, will still carry a (100) unirrep of U(3) but g, will now carry 
a (00- 1) unirrep of U(3). Thus g, will carry a (11) unirrep of SU(3). That SU(3) is 
embedded in SO(6) is easily verified with the following change of variables: 

gl ,  = - (1/~‘3)(77~,+i77~~),  g2, = (i/JZ)(Sll - i 7 7 2 t ) .  (3.7) 

In terms of the new variables 7, an anti-Hermitian basis for the Lie algebra of SO(6) 
is given by 

W 6 ) :  {XP” = 7 7 r a / a 7 7 u  - 7 7 v a / a 7 7 & J ,  ~ , v = ( a i ) , l ~ a ~ 2 , 1 ~ i ~ 3 ,  (3.8) 
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and we easily find that the Lie algebras of the complementary subgroups are now given 
by (cf Bracken and MacGibbon 1984, Biedenham and Flath 1984, Hecht and Pang 1969) 

SU(3): { C ,  = m l l ) ( l l ) +  x~zl)~z,)+ix~21)(,,)+ix~2,~(ll~) -MsA 
Y W ) :  { M  = - i X ( l r d .  (3.9) 

From (3.4) and (3.5), it is clear that if we retain only the O(6) unirrep [ h ]  in each 
U(6) unirrep { h } ,  then the direct sum of these O(6) maximal unirreps contains every 
SU(3) unirrep precisely once. Thus it is an SU(3) model space. This space is known 
to carry a unirrep of the group S0(6 ,2)  (see 0 5) .  This was the starting point of the 
analysis of Biedenharn and Flath (1984) and Bracken and MacGibbon (1984). Bieden- 
harn and Flath (1984) proceeded to give the SU(3) decomposition of the enveloping 
algebra of S0(6 ,2)  which allowed them to study the tensor structure of SU(3) in terms 
of the fundamental Wigner operators of SU(3) in a coordinate-free way. Their results 
may be compared to those obtained by the authors elsewhere (Le Blanc and Rowe 
1985c, 1986). 

Unfortunately, the S0(6 ,2)  model as presented above has some undesirable 
features. First, although a non-unitary realisation can be given relatively easily for the 
s0(6,2) algebra in terms of Bargmann variables (Biedenharn and Flath 1984, Bracken 
and MacGibbon 1984), its unitary realisation is complicated by the appearance of 
non-polynomial expressions in these same variables. Then, the SU(3) group is not 
canonically embedded in SO(6) and the decomposition and classification of more 
general SU(3) tensors appearing in the enveloping algebra of S 0 ( 6 , 2 )  is therefore 
obscured. Furthermore, the fundamental Wigner (shift) tensor operators carrying 
irreducible representations (10) and { 1 l }  of SU(3) have complicated expressions in 
this realisation (cf Biedenharn and Flath 1984, Bracken and MacGibbon 1984). It will 
be shown in § 4 that these problems can be remedied. 

4. The SO*@) model for SU(3) 

Starting from the Lie algebra isomorphism u(4) - s0(6)Os0(2), we construct a Lie 
algebra so*(8) isomorphic to s0(6,2) in which su(3) is canonically embedded. In § 5,  
we go on to show that the simple but apparently non-unitary realisation of s0(6,2) in 
terms of six Bargmann variables is nothing but a coherent state realisation of this 
algebra which is, in fact, unitary with respect to the coherent state measure but not 
with respect to the Bargmann measure. 

The Lie algebra u(4) is given in terms of two four-dimensional Bargmann vectors 
g,,, a = 1,2,  p = 1 , .  . . , 4  (with summation over repeated indices) by 

with the u(3) subalgebra given by the restriction of the indices p, v to i, j = 1,2 ,3 .  
According to this definition, the boson vacuum 

(g10) = 1 

carries a unirrep 1{000}= (1111) of U(4) where we use the notation ( h l h 2 h 3 h 4 ) ~  

h4{h, - h4, h2 - h4, h ,  - h4). 
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We now augment this u(4) algebra by the addition of six Cartan raising operators, 
antisymmetrical in their indices, 

and six Cartan lowering operators, also antisymmetrical in their indices, 

(4.3) 

We find the following commutation relations: 

[ c p m  Ay61 = 6 u y A , &  + ‘3vsAy,, 

[ B p m  4 6 1  

[c,, B y 6 1  = -6 ,yB~6 - 8*SByv, 
(4.4) 

66vcy, + ‘3ypc8u - s u y c 6 ,  - s,8cyv 

Under u(4), A is a { 1100) tensor, B is a (00 - 1 - 1) tensor while the u(4) subalgebra 
is spanned by the components of a { 100 - 1) tensor. 

The Lie algebra (4.4) is highly reminiscent of the Lie algebra associated with the 
non-compact symplectic group S p ( 4 , S )  (see e.g. Rowe et a1 198Sb). In fact, the main 
difference between the two algebras resides in the fact that the symplectic raising and 
lowering operators Aip,, and BFp are symmetrical in their indices while here A,, and 
B,, are antisymmetrical. The algebra (4.4) can duly be generalised to any dimension 
n. The corresponding groups have already been identified. They are associated with 
a particular real form of the D, class of Lie groups and are denoted SO*(2n) by 
Gilmore (1974) who also noted the isomorphism S0(6 ,2)=S0*(8) .  Note that the 
index n stands for the index of their maximal compact subgroups U(n).  

We consider the unitary irreducible representations of the positive discrete series 
of SO*(2n) that are infinite-dimensional lowest weight unirreps as for Sp( n, M)(Rowe 
et a1 198Sb), i.e. they are characterised by a lowest weight state for which 

B,”l{h)LW) = 0, 

where h is the partition characterising the U(n)  unirrep generated from the lowest 
weight state by the u(n)  subalgebra. Evidently, the realisation of S0*(8) given by 
(4.1)-(4.3) corresponds to the representation 1{000) = { 11 1 l}. 

Now the set of polynomials of degree h ,  in the Cartan raising operators A of 
S0*(8) will span the U(4) unirrep {h,h,OO}. Furthermore, under the U(4) 3. U(3) 
reduction, we retrieve from the well known betweenness conditions of the Gel’fand 
patterns the set of SU(3) unirreps: 

SU(4) 3. SU(3): {hlh lO)  3. 9 { h , h J .  
h 2 = 0  

For example, the SU(3) lowest weight state belonging to the unirrep {h,h,) will be 
given in our Bargmann space by 

(g I h 1 h A  ~ w )  = M ( h (4.6) 

where M ( h l h z )  is a normalisation constant. Thus it is apparent that the l(OO0) unirrep 
of S0*(8) is an SU(3) model. 

1 A :i- h2  ( g ) A ti( g 1 
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This SU(3) model has some very useful properties. In particular, as a consequence 
of the fact that the u(3) 2 su(3) subalgebras are canonically embedded in s0*(8), the 
s0*(8) algebra naturally decomposes into irreducible SU(3) tensors which are in fact 
Wigner tensors (see (4.9)). 

A fundamental U(3) Wigner tensor, using Biedenharn and Flath notation (1984), 
is characterised by a set of shifts 

A = (AI ,  A 2 ,  A 3 1  (4.7) 

by which we mean that this tensor will map an SU(3) unirrep { h l h 2 }  of our model 
space to a new unirrep labelled by 

{h’,h;} = {hi  + A i  - A 3 ,  h 2 +  A 2 - A 3 } .  (4.8) 

We easily verify that the following SU(3) vector tensors in the s0*(8) algebra have the 
shift properties: 

fEjlkAjk : A = ( 1 lo), An4: A = (loo), 

C,4: A = (OlO), C4,: A = (101), (4.9) 

Bj4: A(011), f&jjkBjk: A = (001). 

Therefore, the expressions for the fundamental Wigner operators are seen to be 
extremely simple in this model. Their Hermiticity relations are also clearly apparent. 

We could now proceed to study the tensor structure of SU(3) within the S0*(8) 
framework but refrain from doing so. We nevertheless note that, although the analysis 
of Biedenharn and Flath is coordinate free and therefore independent of the realisation 
of the model, it can be shown (Le Blanc and Rowe 1985d) that a classification of all 
SU( 3) tensors belonging to the enveloping algebra of SO*(8) yields somewhat different 
results. As 4 4 )  is the maximal compact subalgebra of s0*(8), tensors in the enveloping 
algebra are first classified as U(4) tensors and, due to the multiplicity-free reduction 
U(4) .1 U(3), such a classification resolves some of the ambiguities of the construction 
given by Biedenharn and Flath. Furthermore, while most of their proofs are construc- 
tive, Le Blanc and Rowe’s are deductive (therefore more transparent) and only use 
two properties of the U(4) tensors, namely their SU(4) weight properties and their 
straightforward U(4) .1 U(3) decomposition using the betweenness conditions of the 
corresponding Gel’fand patterns. 

We conclude this section by giving the s0(6,2) - s0*(8) isomorphism. Recall that 
the Lie algebra for S0(6,2)  is given in terms of the 28 Hermitian generators JAB, 

A, B = 1,8, J A B  = J L B  = - JBA by 

[JAB, JCDl =i(gACJBD+gBdAC -gAdBC -gBCJAD), (4.10) 

where ( g A B )  is the diagonal metric g = (1, 1, 1, 1, 1, 1, -1, -1). 
The isomorphism between so(6) and 4 4 )  is immediate if one uses Wong’s so(n)  

lowering and raising operators (see Wong 1967, Hecht and Pang 1969). We then find 
the following correspondences for the Cartan subalgebra: 

cl 1 = $(J12 + 3 3 4  + 356 + 378)9 c 2 2 = t ( 3 1 2 - 3 3 4 - 3 , 6 + 3 7 8 ) ,  
(4.11) 

c33 = f ( - 3 1 2 - 3 ~ 4 + 3 5 6 + 3 7 8 ) ,  CM = f ( -312 + 534 - 3 5 6  + 3 7 8 ) .  
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The 4 4 )  lowering operators are given by 

C31 = +(JI3 - iJ23 - iJt4 - J24), 
Czl =i(J45-iJ46+iJ35+J36),  C,, = f(J1, -Uz3+ iJ14+ J24), (4.12) 

C32 = +( -Jls + iJ,, - iJ16 - J 2 6 ) ,  
and their Hermitian adjoints give the raising operators. The non-compact raising 
operators are given by 

C41 =t(J15-iJ25-iJlCl-J26), 

C,, = +(J,,  - iJ46 - iJ3s - J 3 6 ) ,  

A12 = i(J17 + i J 2 7  - i J l 8  + 528) ,  A13 = -5i(JS7 + i J 6 7  - iJ58 + J.58) ,  

A14 = +i(J37 + iJ47 - i ~ , ~  + J48), ~ 2 3  = - t i ( J 3 7 - i ~ 4 7 - i ~ 3 8 - ~ 4 8 ) ,  (4.13) 
A A24 = - ti(Js7 - - ijSs - &), 34 - 2(Jl  7 - J27 - iJl 8 - J28) 9 

while the non-compact lowering operators B,, are given by 
B = A t  

,U ,U. 
(4.14) 

The verification of the isomorphism between the s 0 ( 6 , 2 )  Lie algebra as given by 
(4.10) and the Lie algebra generated by {A, B, C} (equation (4.4)) is then immediate 
if one uses the correspondences (4.11)-(4.14). 

5. Coherent state representation for the discrete series of SO(n, 2) 

In this section, we show that the non-unitary boson realisation of the s0(6,2) Lie 
algebra given by Biedenharn and Flath (1984) and Bracken and MacGibbon (1984) 
for the S0(6 ,2)  model is but a coherent state realisation. The coherent state realisation 
given below is general and applies to all discrete series of SO(n, 2). 

In terms of the ( n  + 2)( n + 1)/2 Hermitian generators 

A , B = l ,  . . . ,  n+2,  JAB = J ~ B  = -IBA, 
the Lie algebra for so(n, 2) is given by 

[JAB, JCDl=i(gACJBD+gBdAC -gAdBC-gBCJAD), (5.1) 
where(gAB) is the ( n + 2 ) x ( n + 2 ) d i a g o n a l m e t r i c ( l , l ,  . . . ,  1,-1,-1). 

must express it in a Cartan basis. We therefore define 

z u  = (l /Jj)(~m,n+l - i ~ a , n + 2 ) ,  

D, = zh = (1/42)(Ju,n+l + i ~ , , ~ + 2 ) ,  

Before introducing the coherent state representation for the so( n, 2) algebra, we 

a = 1, .  . . , n, 
- 

a = 1, .  . . , n, 
(5.2) 

X U p  = -iJop, 

N = J n + l , n + ~ .  

a, p =1,  . . . ,  n, 

From (5.1) and (5 .2) ,  we then obtain (see also Bargmann and Todorov 1977) 

(5.3a) 

and 
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In this basis, 2 and D behave respectively as Cartan (n-vector) raising and lowering 
operators. The generator N spans an so(2) - U( 1) subalgebra while the anti-Hermitian 
generators ( X F V )  span the s o ( n )  subalgebra. Together N and ( X , , )  span the maximal 
compact subalgebra so(2)0so(  n). 

Generic discrete series representations of SO( n, 2) are identified by their lowest 
weight states, i.e. states of lowest weight with respect to the s o ( n )  subalgebra that are 
also annihilated by the lowering operators D,, 

D,lno[ml; LW) =o,  YP. (5.4) 

We will label such representations by 

no[m,m,. . . mvl, n = 2 v  or 2 u +  1, 

where no is the value of the so(2) number operator N on the lowest weight state and 
[ 111,311, . . . m,] is the character of the SO( n )  unirrep generated from the lowest weight 
state by the s o ( n )  subalgebra. 

Vector valued coherent state wavefunctions are defined by (Rowe 1984, Rowe er 
a1 1985a) 

l m ) = C  l77)(771eZDI$) (5.5) 
R 

where z *  D=z,D, and where {Is)} spans the SO(n) unirrep based on the SO(n, 2)  
lowest weight state. We shall refer to this unirrep as the ‘intrinsic’ SO( n )  unirrep. The 
wavefunctions (5.5) are seen to be holomorphic functions of the n-dimensional 
Bargmann vector z, which expresses the factor space 

SO(% 2)/(SO( n)O SO(2)) 

in a coordinate system. 

Lie algebra is defined by 
The coherent state representation r( 0 )  for any operator 0 belonging to the so( n, 2) 

r(0)l$(z))=C 177)(771e’ 
r )  

=C/q)(77/{0+[z .  D , O ] + i [ z -  D , [ z .  D , 0 ] ] +  . . .}  eZDI$). (5.6) 
R 

Using (5.3) and (5.6), we therefore obtain the following coherent state realisation r 
for SO(n, 2): 

r( z,) = Zax:Y + (NI + . v - I ) ~ ,  - tZ  . z~ y) 

I-(&) = V”, r(x,u) = xzy+ ( Z U V ,  - z,V,), (5.7) 
r ( N ) = N i + z . v ,  

with V, = a / a z ,  N’ and XLv span an intrinsic so(2)0so(n)  algebra that commutes 
with the Weyl-Heisenberg (boson) algebra { z,, V,, S,,}. Equivalent expressions are 
also obtained in the partially coherent state formalism of Deenen and Quesne (1984). 

For a representation no[ m ]  = nO[O], for which the intrinsic SO( n )  representation is 
the trivial identity representation, the coherent state realisation (5.7) simplifies to the 
purely boson realisation 

( 5 . 8 )  
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The particular boson realisation To for which no = (n /2  - 1 )  corresponds to the funda- 
mental SO(n, 2) representation and has been given previously by Lohe and Hurst 
(1971) and Bargmann and Todorov (1977). The generators To(Z) for this particular 
representation are often referred to as traceless bosons. They satisfy 

[v', ro(zv)] = 2z,v2 (5.9) 
and, as a consequence, the fundamental boson realisation of the so( n, 2) algebra 
generates the space of all harmonic polynomials (symmetrical unirreps [A00 . . . 01 of 
S O ( n ) )  in an n-dimensional Bargmann space (Bargmann and Todorov 1977, Lohe and 
Hurst 1971), i.e. all polynomials P ( ' ) ( z )  of degree A in z such that 

(5.10) 

In general, a vector coherent state representation is carried by the direct product 
of a space of Bargmann polynomials in z and a space of vectors carrying a representation 
[ m] of the intrinsic SO( n )  algebra. 

V2P'A I (  z )  = 0. 

The lowest weight state for a boson realisation rb is the boson vacuum 

(ZIO) = 1 (5 .11)  
which is obviously an SO( n )  scalar. Decomposition under SO( n )  of the fundamental 
irreducible representation (n/2 - 1)[00. . . 01 of SO( n, 2) is particularly simple in the 
light of the above remarks. We have 

e 

SO(n,2)&SO(n):  (n/2-1)[00 . . .  013. [ A 0  . . .  01. (5.12) 

The S 0 ( 6 , 2 )  model for SU(3) as presented by Biedenharn and Flath (1984) and 
Bracken and MacGibbon (1984) thus corresponds to the unirrep 2[000] of S 0 ( 6 , 2 ) .  
Under the transformation (3.7), it is also easily verified that the Wigner operators given 
by Bracken and MacGibbon correspond to the above To representation for S0(6 ,2 ) .  

We remark that T(Z) and T ( D )  are not Hermitian conjugates with respect to the 
Bargmann measure and the realisation (5.7) is therefore not unitary with respect to 
this measure. It is of course unitary, by construction, with respect to the appropriate 
coherent state measure (Bargmann and Todorov 1977, Deenen and Quesne 1984, Rowe 
1984, Rowe et a1 1985a). However, if one defines a Hermitian transformation H = H" 
(Rowe 1984) such that 

ryz,) = H ~ ~ , H - ' ,  (5 .13)  
then the realisation y = H - ' T H  of so( n, 2) is unitary with respect to the Bargmann 
measure. Indeed, 

y(Z,) = Hz,H-' and y (  0,) = H - ' V , H  (5.14) 
are then Hermitian conjugates while the commutation relations for the representation 
y are still identical to the ones given by (5.3). Also, we may require H to be an SO( n )  
scalar so that 

A = O  

(5 .15 )  

The solution of (5.13) for H and the calculation of SO( n, 2) reduced matrix elements 
is greatly facilitated by the technique of Rowe et a1 (1984) of expressing T(Z,) in the 
form 

UZ,) =[A, z,I, ( 5 . 1 6 ~ )  
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where A is the S 0 ( 2 ) 0 S O ( n )  scalar 

A = f [ ( 2 N i  + Z *  V - 1 ) ~ .  V -;z * zV*+(Z,V, - Z,V,)X;,]. (5.166) 

In particular, analytic solutions are possible whenever the SO(n, 2) J. SO(2)0SO( n) 
reduction is multiplicity free as it is for the nO[O] representations. 

When no + CO, we find that the so( n, 2) algebra contracts to 

(5.17) 

(cf Rosensteel and Rowe (1982,1983) and Rowe (1984) for the corresponding contrac- 
tion of sp( n, 8)). Therefore, the basis { y( N ) ,  y(X,,), y ( Z , ) ,  y( D,)} generates under 
contraction an algebra that we easily identify as being the Lie algebra of the group 
product 

(SO(2) 0 SO( n))[HW( n ) l  (5.18) 

with bases given respectively by 

W n ) :  {X,”}, 
SO(2) = U( 1): { N = z,a,} 

HW(n): {z,, 8, a,,), 

(see § 2 for the n = 3 case). 

(5.19) 

6. Coherent state representation for the discrete series of SO*(2n) and calculation in 
an SO*@) model for SU(3) 

Using techniques parallel to those used in § 5, we derive the vector coherent state 
realisation of the so*(2n) algebras, duly generalised from equation (4.4), 

T(A,,)=(C’z),,-(C’z),, - ( n - l ) Z , u - ( Z V Z ) , m  
(6.1) 

UB,,) = v,, r-(C,”) = c:, - (ZV),, 

where p, Y = 1, . . . , n, z,, = -zv,  are antisymmetric Bargmann variables and V,, = 

-Vu, =a/az,, Thus z,, and V,, are components of a Heisenberg-Weyl algebra, 
HW( n( n - 1)/2), satisfying 

(6.2) 

The C,, are the components of an intrinsic U(n)  algebra that commutes with the 
Heisenberg-Weyl algebra (6.2) and we use the matrix notation for products, e.g. 

[V,, z,pl= 6,,&p - S , , L .  

( CiZ),, = c;,z,, 

If { [ { h } ;  7)) denotes a basis for a unirrep { h }  of the intrinsic u(n)  algebra, then a 
basis for the coherent state representation (6.1) of so*(2n) is given by a subset of the 
product states (Rowe et a1 1985b, Le Blanc and Rowe 1985a) 

{ ( z  x z x .  . . x Z){fi)@/{h})}, (6.3) 

where ( z  x z x . . . x z)‘” is a U( n) coupled Bargmann polynomial in the variables ( z,,) 
which individually carry a unirrep (110. . , 0} of U(n). 
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The realisation (6.1) is transformed to a realisation that is unitary with respect to 
the Bargmann measure by a Hermitian transformation r + y = K ’ T K  where K satisfies 

T(A,,) = K’z,,K-’. (6.4) 

The solution of this equation is greatly facilitated, following Rowe et a1 (1984), by 
expressing T(A,,) in the form 

UA,”)  = [a, Z,”l (6.5) 

SZ = i Tr(zVzV) +a( n - 1) Tr(zV) -Tr(zVC’). (6 .6)  

where 

Specialising to the unirrep 1{000} of S0*(8) ,  for which Czy = a,, we obtain 

(6.7) 

with 

0, = jTr( zVzV) - aTr( zV) .  (6.8) 

We find that SZ, has eigenvalues 

nO(h1) = (h,+3)h,/2 (6.9) 

on the states 

(zl{h,h,OO); 59 (6.10) 

which are Bargmann polynomials of degree h,  in the z. The label 5 stands here for 
the usual three-rowed Gel’fand pattern appropriate for the canonical U(4) 2 U(3) 2 
U(2) 2 U( 1 )  reduction. 

Matrix elements for the generators of the s0*(8) algebra are given by the product 
of an SU(4) Wigner coefficient times some SU(4) reduced matrix element since the 
s0*(8) algebra is naturally expressed in terms of SU(4) tensors (equation (4.4)). 

The reduced matrix element for a generator C,, of the su(4) subalgebra is propor- 
tional to the square root of the su(4) quadratic Casimir invariant, up to normalisation 
of this subalgebra. 

Using techniques similar to Rowe (1984) and Rowe et a1 (1985b), we find that the 
reduced matrix element for the raising operator Ai”o’ is equal to 

( {h ,+ 1, h,+ 1, O I I I A i l l o ’ l l ~ ~ l ~ l O l ~  

= ~ ~ , ~ ~ , + ~ ~ - ~ o ~ ~ , ~ l ’ ~ 2 ~ ~ ~ l + ~ ,  ~ 1 + ~ , 0 H l ~ l l ~ ~ 1 ,  h,,O)) 

= [( h ,  + 2 ) ( h ,  + 1 ) y  (6.11) 

where 

( { h , + l ,  ~ , + ~ 9 0 ~ l l ~ l l ~ ~ l ~  h , ,O))=(h ,+1)”*  (6.12) 

is the stretched boson reduced matrix element for the Heisenberg-Weyl algebra (6.2). 
The reduced matrix element for the lowering operators B can be easily deduced from 
(6.11) using Hermiticity considerations. 
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When applied to the representation (4.1)-(4.3) of s0*(8), the result (6.11) can be 
used to give 

(6.13) 

from which all other states of the SU(4) unirrep { h l h l O }  can be reached using the 
SU(4) raising operators. 

Therefore, the knowledge of a few SU(4) Wigner coefficients should tremendously 
simplify the computation of matrix elements of a complete set of tensors for SU(3) 
arising in the enveloping algebra of the fundamental representation of S0*(8) (Bieden- 
harn and Flath 1984) and hence should offer a very powerful tool toward a concrete 
resolution of the tensor structure of SU(3) in the context of a dynamical group for 
SU(3), namely S0*(8).  
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